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Introduction
The distribution of an infectious disease over an animal
population and its evolution through time are the results
of the dynamic interactions of the host and pathogen
systems.  These interactions may be represented in the
form of mathematical functions specified by parameters
that quantify the rates at which processes evolve. Various
types of epidemic models have been formulated
depending upon the characteristic of the infection (3).
Among others, the SIS model is appropriate for infectious
disease for which no permanent immunity occurs after
recovery. The initials SIS refer to the movement of a
typical animal through the two states of the disease:
Susceptible – Infectious.  An animal in the state S is
healthy but susceptible to become infected with the
disease upon exposure to the contagious agent. Upon
infection, it enters the state I and remains in it until
recovery to the S state.

Usually, SIS models treat populations as homogeneous in
the sense that an I animal is equally likely to infect any S
animal and all S animals are equally susceptible to
infection by any I animal.  However, it must be
recognized that animals are more or less resistant to a
same infective dose because of genetic and non-genetic
differences.  It seems likely that the genetic factor behind
resistance to infectious disease is a combination of a
number of genes, each having a small contribution to the
disease relative risk (8).

Both, deterministic and stochastic modeling approaches
exist.  Deterministic models are based on ordinary
differential equations and capture the essential
relationships among the different components.  However,
an infection may be initiated in a small population, and
under such conditions, a stochastic model that allows for
inherent fluctuations may yield qualitatively different
behavior.

In this paper, we extend homogeneous deterministic and
stochastic SIS models to investigate the impact of genetic
heterogeneity in the spread of a bacterial infectious
disease.  

Material and Methods
Let a population of density N constituted of g groups of
cows sharing the same kinship degree i such that N = Σi
Ni (i = 1, 2, … g) and pi = Ni /N is the proportion of pairs
of relatives of the ith kinship degree (Σi pi = 1).  Each ith

group is constituted of Si susceptible cows and Ii infected
ones, with Si + Ii = Ni.    The initial conditions (t = 0) are
specified by Si(0) = s0 and Ii(0) = i0.

The deterministic form of the SIS model is for the ith

group of relatives:
dSi/dt = ∆ – µ Si + γ Ii – λ i  k [SIi]
dIi/dt = λi  k [SIi] – (γ + µ + ε ) Ii

dNi/dt = ∆  – µ Ni – ε Ii

where ∆ is the constant replacement rate, µ is the natural
culling rate, γ is the recovery rate, ε is the culling rate due
to the infection, k is the contact rate between cows, λ i is
the probability that any one contact will transmit
infection and [SIi] is number of encounters between an
infected cow and a susceptible one.  As a measure of the
susceptibility of a cow to infection, λ i is a function of the
degree of relatedness between cows in contact within the
ith group (ai), the heritability of the resistance to infection
(h²), and the average population transmission probability
(λ0): λi = h² (1 - λ0) ai + λ0.

In the stochastic framework, the spread of a SIS
infectious disease is modelled as a Markovian
continuous-time model (1).  The infinitesimal transition
probabilities in the interval (t, t + dt) are defined by:
Pr[(Si, Ii)t + dt  = (s + 1, i ) | (Si, Ii)t  = (s, i )] ~ ∆ dt
Pr[(Si, Ii)t + dt  = (s - 1, i ) | (Si, Ii)t  = (s, i )] ~ µ s dt
Pr[(Si, Ii)t + dt  = (s, i -1) | (Si, Ii)t  = (s, i )] ~ (µ + ε) i  dt
Pr[(Si, Ii)t + dt  = (s + 1, i -1) | (Si, Ii)t  = (s, i )] ~ γ i dt
Pr[(Si, Ii)t + dt  = (s - 1, i +1) | (Si, Ii)t  = (s, i )] ~ λi k [si]i dt
where ∆, µ, ε, γ, λ and k have the same meanings as in
the deterministic model.  The Gillespie algorithm was
selected for the stochastic simulation.  This discrete-event
simulation technique makes time steps of variable length,
based on the transition probabilities and numbers s and i .
In each iteration, random numbers are generated to
determine the time and the type of the next transition.
Upon the execution of the selected transition, the
populations are altered accordingly and the process is
repeated (6).

Deterministic and stochastic models were illustrated by
modelling bovine mastitis spread on a dairy farm with 5
different groups, each composed of 20 relatives of the ith

degree with ai = 0, ½, ½², ½3 and ½4.  Models were
implemented by introducing a single infected cow in each
group and typical proportion of infected quarters was
computed.  Default values for the parameters were
derived from the literature on S. aureus quarter infection
and on culling strategies in dairy cattle (4, 7, 9,10): λ0 = 2
*10-2, γ = 4 *10-3, ε = 0.005, µ = 7 *10-4, h² = 0.05.  The
replacement rate was chosen to insure the initial disease-
free equilibrium: ∆ = µ Si(t=0) .  As no information was
available on the average number of contacts per unit of
time made by a quarter, it was assumed constant and
directly proportional to the number of quarters initially
present in each group of relatives.

Results
For each group of relatives, the deterministic model has
two equilibrium points: the disease-free equilibrium with
Ii = 0 and Si = ∆/µ 

  

 and the endemic-disease equilibrium
with Si = (γ + µ + ε )/(λ i k) and Ii = [(∆ λi k) – µ (γ + µ +
ε)]/(µ + ε) λ i k.  The Jacobian matrix evaluated at both
equilibria showed the endemic-disease equilibrium is
always stable but the disease-free equilibrium is stable if
R0i <1 with R0i =  [λi ∆ k]/[µ  (γ + µ + ε)] <1. As the same
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set of coupled equation was applied to all groups of
relatives, the R0 for the whole population is R0 = Σi  pi R0i
for i = 1, 2, … g.  This global R0 gives the total average
number of new infective cows in the population produced
by one infective during the mean (death-adjusted)
infective period (5).

The relationship between R0 and the proportion of
relatives is given by

R0 = [∆/µ] [k/(γ + µ + ε)]
[λ0 (1 - h² Σi=1 ai pi) + h² Σi=1 ai pi].

Then, in a population composed of unrelated and relatives
of one type (ai>0), the maximum proportion of relatives
tolerable to have no or minor epidemics (R0<1) is:

pMax ={1 - λ0 [∆/µ] [k /(γ + µ + ε)]}/
{( 1 - λ0) ai h² [∆/µ] [k /(γ + µ + ε)]}

The results of the simulation with the deterministic and
stochastic models for the S. aureus infection are
illustrated in the following figure:
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Discussion
The central question is whether or not, and under which
conditions, an infectious disease will spread in a
population when the degree of  susceptibility is related to
the degree of relationship between susceptible and
infected animals.  Given the assumption of fitness
declining with increased inbreeding, the probability of an
epidemic will be minimized if the population is
composed only of unrelated animals but this is not an
absolute constraint (2).  Indeed, the global R0 can be
made less than 1 for different population structures. For
example, in a population composed of related and
unrelated of the ith type, the maximum proportion of
related cows (pMax) admissible to keep R0<1 can be
computed and will increase if h² decreases.  This is
particularly interesting for the control of infectious
disease for which h² is usually low.

Other assumptions underline the model such as equal
contact amongst animals of different genotypes and
constant average infectiousness per infective animal.  But
these are an obvious starting point for developing any
general theory and more realistic models may be
developed.

Conclusion
Methodologies exist to help breeders to make appropriate
breeding choices to limit the transmission of an infectious
disease based on the knowledge of parameters
characterizing the infection (γ, ε), the population
demography (∆, µ) and the genetic composition (λ0, ai, h²)
of the population.
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